
176

INTRODUCTION

SDN systems are a new interesting and still
very challenging paradigm that nowadays is used
in many important practical applications [1, 2, 3].
The main idea assumes that in the case of these
networks, a control plane (routing process) is sep-
arated from the data plane, i.e. network packets
forwarding process. The first approaches to this
idea in computer networks can be dated back to
2004 (see RFC 3746 document for instance [4]),
however, the whole concept is not a new one,
since earlier it was proposed and used in the case
of switched telephone networks. As a result, the

intelligence of classical, static traditional net-
works architecture is improved within one or
more network components (e.g. SDN switches).
Such an approach is seen as a paradigm change in
computer engineering [5, 6, 7].

In this paper the authors propose a detailed
practical approach where some development and
applied research actions were taken and, as a final
result, there were obtained some specific results
that can be useful for those who are working with
SDN networks and their possible applications in
operational technology (OT) networks and criti-
cal infrastructure. 4 different scenarios were test-
ed giving the evidences how some actions should

Detection of Incidents and Anomalies in Software-Defined Network
– Based Implementations of Critical Infrastructure Resulting
in Adaptive System Changes

Patryk Organiściak1, Paweł Kuraś1*, Dominik Strzalka1, Andrzej Paszkiewicz1,
Marek Bolanowski1, Bartosz Kowal1, Michał Ćmil1, Paweł Dymora1,
Mirosław Mazurek1, Veronika Vanivska1

1 Department of Complex Systems, The Faculty of Electrical and Computer Engineering, Rzeszow University of
Technology, ul. MC Skłodowskiej 8, 35-036 Rzeszów, Poland

* Corresponding author’s e-mail: p.kuras@prz.edu.pl

ABSTRACT
In the paper an example of an integrated software-defined network (SDN) system with heterogeneous techno-
logical instances based on the Linux platform will be shown. For this purpose, two research testing stands with
a POX controller and OVS (Open vSwitch) switches were used. In the first testing stand, the research based on
the ICMP traffic was done while in the second one, MQTT traffic was analysed. The capabilities of these systems
were examined in terms of responding to detected incidents and traffic anomalies. In particular, their appropriate
responses to anomalies were tested, as well as the possibility of continuous monitoring of packet transfer between
separate network components. The aim of the paper is to investigate the effectiveness of SDN in enhancing the
security and adaptability of critical infrastructure systems. For isolation and optimised resource management,
some components, such as POX or the MQTT broker, were run in Docker containers. The test environment used
both hardware cases and prepared software, enabling comprehensive design and testing of networks based on the
OpenFlow protocol used in SDN architecture, enabling the separation of control from traffic in computer networks.
The results of this research make it possible to implement anomaly detection solutions in critical infrastructure
systems that will adapt on the fly to changing conditions that arise, for example, in the case of an attack on such
infrastructure or physical damage to it at a selected node.

Keywords: anomaly detection, software-defined network, open vSwitch, open flow protocol, adaptive system changes.

Received: 2024.06.14
Accepted: 2024.09.18
Published: 2024.10.06

Advances in Science and Technology Research Journal, 18(7), 176–191
https://doi.org/10.12913/22998624/192641
ISSN 2299-8624, License CC-BY 4.0

Advances in Science and Technology
Research Journal

177

Advances in Science and Technology Research Journal 2024, 18(7), 176–191

be done and what kind of final result can be ex-
pected with specific network configurations.

Remark: because a significant part of the pa-
per is related to several important listings with
codes of programs, the reader is requested to visit
an external repository (pastebin.com) as it is given
by References [17–25]. The multicitation [17–25]
includes references to various code snippets and
configurations essential for setting up and man-
aging the POX controller and handling MQTT
(Message Queue Telemetry Transport) traffic in
a Docker environment. Each of these references
details specific steps and methods crucial for the
implementation of the test environment, such as
preparing the Docker image for POX with build-
ing and running an image [17, 18], handling in-
coming packets [19], constructing MQTT con-
tainers based on eclipse-mosquitto image [20],
recognizing and processing MQTT packets [21],
and managing traffic anomalies [22–25]. This in-
formation is vital for the accurate replication and
understanding of the experimental setup and re-
sults discussed in the paper.

The aim of the paper is to investigate the ef-
fectiveness of SDN in enhancing the security and
adaptability of critical infrastructure systems. By
examining the detection of incidents and anom-
alies within SDN-based implementations, the
study seeks to demonstrate how adaptive system
changes can be implemented in response to vari-
ous challenges. Through detailed testing setups
and analysis, the paper aims to provide practical
insights and evidence on the benefits of integrat-
ing SDN solutions in operational technology net-
works, ultimately contributing to the advancement
of secure and resilient network infrastructures.

The motivation for this paper comes from two
major sources. The first one is related to the rapid
evolution of SDN into critical infrastructure sys-
tems, which underscores the need for advanced
mechanisms to ensure their security, reliability,
and adaptive capabilities. This paper addresses
this need by exploring the detection of incidents
and anomalies in SDN-based implementations,
highlighting adaptive system changes in response
to these challenges. The second one is related to
the fact that authors take active part in the project
CRINET, Critical Network SDN Security Sys-
tem where the main challenge was to test and use
SDN solutions for distributed OT systems where
communication between subsystems is done via
IT networks thus convergence and packets encap-
sulation is done.

THE RELATED WORKS

Security in IT solutions has a strategic role in
ensuring the integrity, confidentiality and availabil-
ity of data, which is essential for the operational
continuity and resilience of IT systems [34]. Ad-
ditionally, a critical aspect in information systems
is the protection and access to the information they
contain [33]. The growing interest in SDN [35], in-
dustrial internet of things (IIoT) [36], internet of
things (IoT) [37], intrusion detection system (IDS)
and the MQTT protocol in IoT environments has
resulted in a large amount of research aimed at im-
proving network security and performance [38].
This section reviews the existing literature on SDN
applications in IoT, focusing on anomaly detec-
tion, lightweight messaging protocols and machine
learning-based intrusion detection systems, high-
lighting advances and challenges in these areas.
Examples of practical applications of the analyzed
solutions are also described.

The paper [39] presents an intelligent light-
weight scheme for detecting LR-DDoS attacks
in software-defined IoT environments, based on
the MQTT protocol. The scheme uses four ma-
chine learning models to analyse a state-of-the-art
LRDDoS-MQTT-2022 dataset and achieves high
detection accuracy, with the best results obtained
by a decision tree classifier (DTC) with 99.5% ac-
curacy. The research [40] also proposed a learn-
ing-based detection approach that implements
learning algorithms and uses Openflow packets to
identify attack traffic in the SDN control and data
planes. The proposed approach and experimental
results show that the system accurately identified
low-speed DDoS attack traffic with low imposi-
tion on performance of the system.

The article [41] describes a new denial of ser-
vice (DoS) attack on the MQTT protocol, called
‘Slow Subscribers,’ which can turn MQTT serv-
ers into single points of failure, and presents solu-
tions to increase resilience to such attacks. The
attack has been shown to be effective in disrupt-
ing MQTT servers, causing significant delays and
potentially bringing them to a complete halt. The
authors proposed methods to detect and prevent
such attacks that significantly improve the resil-
ience of servers to such threats.

The analysis [42] presents an SDN-based solu-
tion for detecting and mitigating DoS and DDoS
attacks in IoT networks, using an entropy approach
to detect network traffic anomalies. The authors
conducted experiments in three different scenarios,

178

Advances in Science and Technology Research Journal 2024, 18(7), 176–191

demonstrating the effectiveness of the proposed
method in real IoT traffic conditions. The results
show that the entropy-based method can effective-
ly detect and mitigate DoS and DDoS attacks, min-
imising the impact on legitimate network traffic.

This study [43] discusses how SDN over-
comes many shortcomings of wireless sensor
networks by proposing an SDN-IoT framework
where sensor nodes work within an SDN environ-
ment, sending their transmission data to the SDN
controller using a Mosquitto broker. The data
is analyzed by a Python application to compute
packet rate and bandwidth, identifying potential
DDOS attacks if these metrics exceed thresholds,
with plans to integrate Machine Learning for en-
hanced DDOS detection in the future.

Attack-resistant IoT systems may have practi-
cal utility. The study [44] presents a communica-
tion system for battlefield UAV (unmanned aerial
vehicle) swarms based on SDN and the MQTT pro-
tocol. This practical application aims to enhance
the efficiency and reliability of communication in
the dynamic and demanding conditions of the bat-
tlefield. The researchers implemented the system
by integrating SDN controllers to manage network
resources dynamically and using the MQTT proto-
col to facilitate real-time, low-latency communica-
tion between UAVs. Additionally, they proposed a

QoS-based (Quality of Service) multi-path routing
framework, which calculates multiple disjointed
paths from sources to destinations to enhance net-
work performance. Another practical example is
paper [4] which proposes an SDN-controlled MA-
NET (Mobile Ad Hoc Network) swarm for mobile
monitoring, utilizing Raspberry Pi-equipped MA-
NET nodes integrated with cameras and sensors,
networked through ad hoc protocols, and managed
via centralized SDN control to achieve flexible, ro-
bust, and efficient monitoring, with experimental
results proving the feasibility of this architecture.

Experiment set-up

For research and testing, an integrated sys-
tem of diverse technological instances based on
the Linux platform was developed. A POX con-
troller and OVS (Open vSwitch) switches were
utilized for this purpose. Two research testing
stands were set up as part of the Internet of Ev-
erything research station within the Department
of Complex Systems at Rzeszow University of
Technology [14]. The architecture of the first
testing stand, used for ICMP traffic research, is
illustrated in Fig. 1, and the devices along with
their configuration parameters are detailed in
Table 1. The second testing stand, intended for

Figure 1. Testing stand for ICMP traffic experiments

179

Advances in Science and Technology Research Journal 2024, 18(7), 176–191

Message Queue Telemetry Transport (MQTT)
traffic research, is depicted in Fig. 2, with device
configurations listed in Table 2. To ensure isola-
tion and optimize resource management, compo-
nents such as POX and the MQTT broker were
executed in Docker containers.

The test environment comprised both hard-
ware and software, facilitating the comprehen-
sive design and testing of networks utilizing the
OpenFlow protocol within the SDN architecture.
This adaptable framework allows for dynamic
network traffic management, data flow program-
ming, and adjustment to changing requirements
[9, 10, 11]. The infrastructure also includes three
instances of Open vSwitch (OVS), a versatile
software switch for SDN environments, func-
tioning as a multi-functional network bridge

supporting the OpenFlow protocol for program-
mable traffic control. According to official doc-
umentation, POX supports OpenFlow 1.0 and
offers specific support for Open vSwitch/Nicira
extensions [15]. The framework requires Python
version 3 and is available on GitHub for down-
load via the git tool [16].

The initial phase of research concentrated on an-
alyzing irregularities in ICMP packet transport and
evaluating the responses to these issues (scenarios
1 and 2). Devices used for testing are described in
Table 1, and their topology is shown in Figure 1.

Additional infrastructure components (Ta-
ble1) include Linux-based computers and Open
vSwitch network switches. The computers,
named ‘Sender’ and ‘Receiver’, run on Ubuntu
20.04 and are equipped with tools for generating
ICMP traffic and testing host communication.
Open vSwitch switches can be managed directly
through commands or Python scripts using the
POX environment. In this study, the switches
were configured, with one instance connected
to the POX controller. Not all switches needed
to be connected to the controller, as they oper-
ate in automatic mode after configuration, for-
warding packets correctly between interfaces.
Subsequent research focused on MQTT traf-
fic (scenarios #3 and #4). For this purpose, the

Figure 2. MQTT traffic testing stand

Table 1. List and configuration parameters of devices
Device Ports and adresses

POX eth3 192.168.0.100

Open vSwitch (1) eth3 192.168.0.150

Open vSwitch (2) -

Open vSwitch (3) -

Sender (PC) eth0 192.168.0.2

Receiver (PC) eth0 192.168.0.3

180

Advances in Science and Technology Research Journal 2024, 18(7), 176–191

infrastructure was expanded with additional ele-
ments (Table 2), and their topologies are shown
in Fig. 2. The test setup was augmented with in-
stances essential for MQTT communication:
 • broker - intermediary for communication be-

tween various MQTT clients,
 • clients - four instances acting as sensors, pub-

lishing messages,
 • subscriber - the unit receiving messages from

the broker, marked as MQTT Server.

To verify the communication and function-
ality of the infrastructure, PING and Wireshark
tools were employed. Measurement points where
these tools were used are indicated in Fig. 2 as
Measurement I and Measurement II.

Preparation and configuration of a multiplatform
POX instance

POX, written in Python, was utilized as the
SDN controller, necessitating the preparation of a
system instance with the controller software. POX
offers several stable versions, including angler, bet-
ta, carp, dart, eel, fangtooth and halosaur. The test
environment employed a Docker image prepared
based on the program detailed in [17]. This image is
built and launched using the script provided in [18].

OVS configuration from the CLI level

Open vSwitch facilitates network manage-
ment at layers 2 and 3 directly through the con-
sole, offering extensive functionality and support-
ing multiple protocols. The primary tool for man-
aging Open vSwitch from the console is the ovs-
vsctl command. This command enables switch
configuration, adding ports, defining bridges,
setting port attributes, and establishing connec-
tions to the SDN controller. The functions and
commands are detailed in Table 3.

Controlling OVS with POX in Python

POX is an excellent solution for continuously
controlling Open vSwitch switches according
to programmed rules. Certain basic POX meth-
ods are common to all introduced processes. The
minimal runtime code that manages OVS devices
requires creating a file with the base controller
class. A sample of this code is shown in [19].

The _handle_PacketIn function in the POX
controller is triggered when the controller receives
a packet from the switch, reported by the Pack-
etIn event. This function is crucial for network

traffic processing in an SDN environment. The
_handle_ConnectionUp method is invoked when
a connection is established. This method is impor-
tant because it enables the controller to react to
the connection establishment, allowing for actions
such as initialization, retrieving the switch’s state
information, or assigning specific resources to it.

Preparing the infrastructure to support the MQTT
protocol

Measurement data sent remotely from sensors
is known as telemetry data. Devices connected to
the IoT network transmit information to a central
system, where it is collected and processed. OT/
IoT devices typically have limited computing
power, making lightweight protocols like MQTT
ideal [12, 13]. MQTT is designed to provide high
data throughput in near real-time with minimal
resource usage. It operates on a publish-subscribe
communication model, with a connection broker
service managing links and communication chan-
nels (topics). The topic is an identifier indicating
which publication or subscription channel a given
message is assigned to, and the broker acts as an
intermediary between the sender and recipient, as
illustrated in Fig. 3. For advanced communication
or security requirements, the Advanced Message
Queuing Protocol (AMQP) can be considered as
an alternative [12, 13].

Data transmitted from IoT devices is processed
by central systems (Fig. 3). Any network-connect-
ed device that implements the TCP/IP stack and
supports the MQTT protocol can function as an

Table 2. List and configuration parameters of MQTT
traffic testing devices

Devices Ports and adresses

POX eth0 192.168.0.100

Open vSwitch (1) eth3 192.168.0.150

Open vSwitch (2) -

Open vSwitch (3) -

Open vSwitch (4) -

Sender (PC) eth0 192.168.0.2

Receiver (PC) eth0 192.168.0.3

MQTT Broker eth0 192.168.0.5

MQTT Server (Subscriber) eth0 192.168.0.10

MQTT Sensor (1) eth0 192.168.0.11

MQTT Sensor (2) eth0 192.168.0.12

MQTT Sensor (3) eth0 192.168.0.13

MQTT Sensor (4) eth0 192.168.0.14

181

Advances in Science and Technology Research Journal 2024, 18(7), 176–191

MQTT client, capable of acting both as a subscrib-
er and a sender, facilitating two-way communica-
tion. The Docker tool was utilized to implement
selected infrastructure components for the MQTT
communication testing environment. The port and
access settings are specified in the “mosquitto.
conf” file. The configuration file [20] is respon-
sible for creating the Eclipse Mosquitto image,
an open-source software that provides an MQTT

Broker instance to mediate communication. The
flow of packets through the proposed infrastructure
was verified. All clients’ packets reach the MQTT
gateway, while the subscriber communicates sole-
ly with this gateway, adhering to the MQTT stan-
dard. The script [21] distinguishes MQTT packets
from others. Upon receiving a packet, the code
checks if it is a TCP packet containing IP data. If
the packet is directed to port 1883, designated for

Table 3. Description of subsequent functions used to configure OVS
1 ovs-vsctl del-br br0 Removes the bridge named „br0” (if it exists).

2 ovs-vsctl del-br br1 Removes the bridge named „br1” (if it exists).

3 ovs-vsctl del-br br2 Removes the bridge named „br2” (if it exists).

4 ovs-vsctl del-br br3 Removes the bridge named „br3” (if it exists).

5 ovs-vsctl del-br mybridge Removes the bridge named „mybridge” (if it exists).

6 ovs-vsctl add-br mybridge Adds a new bridge called „mybridge”.

7 ovs-vsctl add-port mybridge eth1 -- set Interface eth1
ofport_request=1

Adds a port named „eth1” to the bridge „mybridge” and sets
the port number to 1.

8 ovs-vsctl add-port mybridge eth2 -- set Interface eth2
ofport_request=2

Adds a port named „eth2” to the bridge „mybridge” and sets
the port number to 2.

9 ovs-vsctl add-port mybridge eth4 -- set Interface eth4
ofport_request=4

Adds a port named „eth4” to the bridge „mybridge” and sets
the port number to 4.

10 ovs-ofctl add-flow mybridge in_
port=1,actions=output:2

Adds a flow rule that says that if a packet enters through
port 1, it will be sent to port 2.

11 ovs-ofctl add-flow mybridge in_
port=2,actions=output:1

Adds a flow rule that says that if a packet enters through
port 2, it will be sent to port 1.

12 ovs-vsctl set-controller mybridge
tcp:192.168.0.100:6633

Sets the OpenFlow controller for the „mybridge” bridge
to the IP address 192.168.0.100 and port 6633. These
settings result from the configuration and address of the
POX itself.

13 ovs-vsctl show Displays details about all bridges managed by ovs-vswitchd
along with controller data

Note: the OVS devices used in the research have port connections prepared by default.

Figure 3. MQTT protocol operation diagram

182

Advances in Science and Technology Research Journal 2024, 18(7), 176–191

the MQTT protocol, the is_mqtt flag is set, and
the handle_mqtt function is called to process the
MQTT packet. If not, the packet is forwarded to
other ports. The entire process is monitored by
logging information about the packet type and the
size of the transferred MQTT data.

Scenario #1 – ICMP traffic filtering

By implementing an instance of POX as an
Open vSwitch controller, the capability to accu-
rately analyze various types of packets, includ-
ing ICMP, was achieved. Understanding anoma-
lies and filtering ICMP traffic, which is used for
routing control, host availability testing, and er-
ror communication, involves defining rules for
data flow in the network. The investigation [22]
(test scenario #1) focuses on analyzing packets
and determining their types. The _handle_Pack-
etIn function manages the event of receiving a
packet from a switch on the OpenFlow control-
ler. When a packet is received, the program logs
information about the event. If the packet is of
the IP type and contains the ICMP protocol, the
program checks the number of received ICMP
packets. If this number exceeds 20, it logs that
the ICMP packet has been discarded; otherwise,
it sends an “Echo Reply” ICMP response to the
source IP address. This code segment provides
control over the number and type of ICMP pack-
ets accepted by the controller, which is crucial
for network security. The program’s results are
illustrated in Figure 4, showing that packets be-
yond the 20th iteration are discarded (“Dropping

ICMP packet from...”). POX effectively analyzes
ICMP packets and can detect and counter related
attacks. This controller responds efficiently to po-
tential ICMP-related threats, making POX an es-
sential tool for maintaining network security.

Scenario #2 – MQTT traffic management

The second research scenario involves de-
terministic operation of sensors in the context of
sampling and transporting measured parameters
to the target system. It assumes that each sensor
provides information at fixed intervals and op-
erates similarly to other sensors. If the number
of packets deviates from the expected count, an
anomaly is reported. Additionally, in cases of
packet redundancy, measurements exceeding the
predetermined limit are discarded. The key as-
sumptions for this scenario are as follows:
 • assumed transmission of 50 to 60 packets in

60 seconds,
 • if the number of packets below the accepted

limits – console event notification,
 • if the number of packets above the accepted

limits – event notification and redundant
rejection.

Figures 5–7 illustrate the basic operation of
the scenario elements. Figure 5 displays the pro-
cess of counting individual packets without using
the anomaly detection mechanism. An attempt
was made to count packets for 60 seconds with a
sending interval of 1 second to evaluate the cor-
rectness of the scripts’ operation. Figure 7 shows

Figure 4. ICMP is ignored when 20 packets are exceeded

183

Advances in Science and Technology Research Journal 2024, 18(7), 176–191

the process of counting packets from a single
source in Wireshark. In the next step, a data trans-
port model was used where the sensor sends data
every 2 seconds (Fig. 8). After 60 seconds, an
anomaly was detected with the message “Anoma-
ly detected on MAC … too LESS data.” Another
test considered the case where the sensor sends
data continuously, and the program reported an
anomaly in both cases, as shown in Figure 9 with
the message “Single anomaly detected on MAC.”

In the codes referenced by [23–25] for net-
work control, packets are handled based on their
type, with only MQTT packets being counted.
When an anomaly occurs, such as the number of
packets from a particular sensor exceeding 60 or
dropping below 50 in 60 seconds, the program
generates an anomaly report and stops receiving
excess data. The code includes mechanisms for
monitoring and reporting anomalies every 60 sec-
onds and flow control for specific MQTT packets,

Figure 5. An example of a process that counts packet occurrences from different sources

Figure 6. POX console for a single sensor that sends data every 1 s. After 60 s, the traffic was summarized and
no anomalies were reported

Figure 7. Transport from 1 sensor data in Wireshark. The ARP packets that were not considered in the count are
shown

184

Advances in Science and Technology Research Journal 2024, 18(7), 176–191

counting them with time and quantity limits. The
state of network traffic for multiple sensors with
different operating intervals is shown in Figure
10. In contrast, the combined use case for all sce-
nario elements is shown in Figure 11, where two
anomalies occurred, indicating that the amount of
data delivered was too low (“Anomaly detected
on MAC … too LESS data”).

To sum up, in scenario #2, Python was used
within the POX framework to monitor the number
of packets from sensors. The system was configured
to expect 50 to 60 packets to be transmitted within
60 seconds from each sensor. If these limits were
exceeded or not met, the script logged the anomaly
in the console and discarded excess measurements.
This approach enabled the detection and response to
any incidents in the network that deviated from the
expected sensor operation standards.

Scenario #3 – traffic filtering based on the MAC
address match of the packet content and header

Scenario #3 involves implementing com-
munication using the MQTT protocol (see Sce-
nario #2), with an additional information com-
ponent: the sender’s MAC address embedded in
the packet. This address is represented as an ele-
ment within a JSON structure [26]. The purpose
of including the MAC address in the packet body
is to control the packet’s source during process-
ing. Within the POX environment in Python, it is
verified whether the MAC address in the JSON
packet content matches the sender’s address in
the MQTT packet header.

This procedure aims to prevent unauthorized
transmission of MQTT packets by ensuring con-
sistency between the sender’s MAC address in the
JSON content and the packet header [27]. This

Figure 8. Example for a sensor that sends data at an interval of 2 seconds

Figure 9. The program reports exceeding the target number of packets for 60 s

185

Advances in Science and Technology Research Journal 2024, 18(7), 176–191

Figure 10. Movement of several sensors in Wireshark

Figure 11. Detection of anomalies indicative of too few packets for 2 out of 3 connected sensors transmitted
within 60 seconds

additional control layer secures the integrity and
authenticity of transmitted data within an MQTT-
based communication system. If a MAC address
mismatch is detected, an incident is reported in
the POX console, and the packet is not forwarded.
The system, detailed in [28], parses MQTT pack-
ets to check if the sender’s MAC address in the
header matches the one in the packet body. This
data integrity control mechanism stops further
packet processing if the addresses do not match.
Error handling ensures that the code checks for
the presence of the “mac” key to avoid blocking
control packets that do not transport the intended
data, such as ARP packets [27].

Figure 12 illustrates a modified method for de-
termining the physical address of one sensor. After
applying the change, this device sends incorrectly
prepared data packets, with the address inside the
packet differing from the one in the packet header.
To confirm the program’s functionality, sensors were

activated, including one with a mismatched physical
address (Figures 13 and 14). Figure 15 shows the
SDN controller console receiving MQTT packets
and confirming whether the sender’s MAC address
is present in the packet body. The program reports
results for both matching and mismatching cases.

To summarize, in scenario #3, MQTT-based
communication was implemented with an addi-
tional information component in the form of the
sender’s MAC address, embedded in the packet
content as a JSON element. This allows for source
control during packet processing. To prevent un-
authorized transmission of MQTT packets, the
consistency of the sender’s MAC address is veri-
fied at two points in the packet structure: the JSON
content and the MQTT packet header. When pro-
cessing MQTT packets, a program on the POX
controller (in Python) retrieves the source MAC
address from the packet header, parses the JSON
structure, deserializes the packet body, retrieves

Figure 12. Changing the sent MAC address from the client level

186

Advances in Science and Technology Research Journal 2024, 18(7), 176–191

Figure 13. Sensor console with a crafted physical address in the packet body

Figure 14. Sensor console with the correct physical address in the packet body

Figure 15. Confirmation and rejection of the MAC address from the content in POX

the MAC address from the body, and compares
the two MAC addresses. If they do not match, the
program reports an incident in the POX console,
preventing the packet from being forwarded.

Scenario #4 - filtering traffic not intended for the
implemented infrastructure

Data filtration is crucial for effective traffic
management in networks supporting telemetry

data transmission. For MQTT data transfer, spe-
cific legitimate use cases for filters include elimi-
nating interference and securing networks against
unauthorized access. Filters help maintain the
stability and integrity of transmitted telemetry
data by identifying and excluding incorrect or
unwanted packets. They also play a vital role
in preventing access from unauthorized devices
by filtering packets from senders without the

187

Advances in Science and Technology Research Journal 2024, 18(7), 176–191

appropriate permissions, such as devices with un-
defined MAC addresses. Additionally, filters opti-
mize network bandwidth by excluding irrelevant
packets that do not meet specific criteria.

In the assumed scenario, a script was pre-
pared to report anomalies when an unknown
packet type or source is detected. A list of allowed
physical addresses was defined to permit commu-
nication within the network. Data from devices
not on this list are reported as rejected. The sec-
ond part of the scenario involves a mechanism for
rejecting non-TCP packets at the transport layer,
such as UDP packets, since MQTT uses TCP. In
this case, ARP traffic was not blocked. Reference
[29] shows a fragment of the PacketIn event han-
dling in the POX controller. The _handle_Pack-
etIn method logs event information and then re-
directs the packet to the handle_pck method. This
second method checks whether the source MAC

address is in the allowed list; if so, the packet is
forwarded, otherwise, information about an il-
legal MAC address is logged. Figure 16 illus-
trates the algorithm’s operation. A detailed packet
transport analysis using Wireshark (Fig. 17) in-
dicates that all outgoing traffic, except from the
indicated MAC address, was blocked. However,
communication was one-way, so the transport of
MQTT packets was not fully correct. In the next
script run, correct bidirectional communication
of both MQTT and TCP packets was observed
(Fig. 18). Additionally, Wireshark only detected
packets from physical addresses on the allowed
list [30]. In the next test phase, the controller re-
ceived various packet types, filtering out those
unrelated to the MQTT protocol. UDP packets,
incompatible with MQTT, were identified. The
code in [31] checks packet types, while the test-
ing code periodically sends UDP packets to the

Figure 16. The process of traffic separation dependent on the physical address of the packet

188

Advances in Science and Technology Research Journal 2024, 18(7), 176–191

Figure 17. Blocking communication and devices recognition in the network

Figure 19. While listening, POX rejects UDP packets (17) and accepts TCP packets (6)

Figure 18. Wireshark detects correct communication of devices from the list

189

Advances in Science and Technology Research Journal 2024, 18(7), 176–191

MQTT Broker device [32]. This script sends UDP
packets to a specific port and IP address using a
UDP socket to transmit ‘UDP’ messages every
second to the MQTT proxy address (192.168.0.5)
and default MQTT port (1883). Each send opera-
tion closes the socket and displays “Udp sent”
on the console. The infinite while loop ensures
the script sends UDP packets continuously, with
a one-second interval between sends. Figure 19
shows the Python code activity in the POX con-
troller, identifying and reporting packets on the
console. UDP packets sent by [32] are reported
as disallowed. As a result of applying the filters
in scenario #4, the system successfully filtered
out non-MQTT traffic. UDP packets were consid-
ered undesirable because MQTT relies on TCP.
Additionally, packets from unregistered physical
addresses were excluded by the SDN controller.
This solution introduced an extra layer of security
by eliminating unauthorized traffic sources in the
context of telemetry data.

CONCLUSIONS

In this paper, four proposed scenarios showed
that the use of SDN solutions, specifically the
POX controller and Open vSwitch (OVS), can
effectively resist various anomaly situations that
threaten network infrastructure. Despite the sim-
plicity of the network topologies, consisting of
no more than five devices, the effectiveness of
OVS was evident. The system’s responses, pre-
sented in the figures, convincingly ensured sta-
bility and resilience against multiple anomalies
that may occur during operation. This approach
is practical for the MQTT protocol used in IoT
and OT communications. The results from con-
ducted scenarios underscore the efficacy of SDN
solutions in detecting and mitigating anomalies
within network infrastructures. Although the net-
work topologies were simple, the principles dem-
onstrated are scalable and flexible, suitable for
more complex systems. The real-time anomaly
detection capabilities of SDN-based systems are
crucial for maintaining the security and reliabil-
ity of critical infrastructures. This research shows
that SDN-based systems can effectively monitor
network traffic, identify irregularities, and take
appropriate actions to mitigate potential threats.

The practical applications of this approach in
IoT and OT environments highlight its relevance
and potential for broader adoption. By integrating

anomaly detection and adaptive response mecha-
nisms, the proposed SDN structure enhances the
overall security posture of the network, which is
particularly important for critical infrastructure
systems. The use of Docker containers for re-
source isolation and management ensures optimal
utilization while maintaining high performance
and reliability.

In conclusion, this research provides a robust
framework for using SDN solutions to enhance
the security and resilience of network infrastruc-
tures. The practical applications in IoT and OT
environments underscore its potential for wider
adoption. Future work could explore scaling these
solutions to more complex networks and integrat-
ing additional protocols and technologies to fur-
ther enhance network security and performance.

Acknowledgment

This paper is partially supported by project:
Critical Network SDN Security System (CriNet,
DOB-SZAFIR 01/A/027/03/2021) co-financed by
the National Center for Research and Development
as part of the state defense and security program ti-
tled “Development of modern, breakthrough tech-
nologies for state security and defense”.

REFERENCES

1. Sunday U.I., Akhibi S.D. Application of software-de-
fined networking, European Journal of Computer Sci-
ence and Information Technology, 2022; 10(2): 27–48.

2. Begović M., Čaušević S., Avdagić-Golub E. QoS
management in software defined networks for IoT
environment: an Overwiev, International Journal for
Quality Research 2020; 15(1): 171–188.

3. Imran G.Z.; Alshahrani A., Fayaz A., Alghamdi
A., Gwak J. A topical review on machine learning,
software defined networking, internet of things ap-
plications: Research limitations and challenges.
Electronics 2021; 10(8): 880.

4. Yang L., Anderson T.A., Gopal R., Dantu R. For-
warding and control element separation (ForCES)
framework, RFC 3746, https://datatracker.ietf.org/
doc/rfc3746/, 2018.

5. Borgianni L., Adami D., Giordano S., Pagano M.
Enhancing reliability in rural networks using a soft-
ware-defined wide area network. Computers 2024;
13(5): 113.

6. Jefia A.O., Popoola S.I., Atayero A.A Software-
Defined Networking: Current Trends, Challenges,

190

Advances in Science and Technology Research Journal 2024, 18(7), 176–191

and Future Directions, in Proceedings of the Inter-
national Conference on Industrial Engineering and
Operations Management, Washington DC, USA,
September 2018; 27–29.

7. Sokappadu B., Hardin A., Mungur A., Armoogum S.
Software Defined Networks: Issues and Challenges,
2019 Conference on Next Generation Computing
Applications (NextComp), Mauritius, 2019; 1–5.

8. Semong T., Maupong T., Zungeru A.M., Tabona O.,
Dimakatso S., Boipelo G., Phuthego M. A review
on software defined networking as a solution to link
failures, Scientific African, 2023; 21: e01865.

9. Rout S., Sahoo K.S., Patra S.S. Energy efficiency in
software defined networking: a survey. SN Comput.
Sci. 2021; 2: 308.

10. Bahashwan A.A., Anbar M., Manickam S., Al-Amiedy
T.A., Aladaileh M.A., Hasbullah I.H. A systematic lit-
erature review on machine learning and deep learning
approaches for detecting DDoS attacks in software-
defined networking. Sensors 2023; 23: 4441.

11. Palka D., Matuszewski A. Software-defined network
SDN in CriNet for cyber secure national critical in-
frastructure, Cybersecurity & Cybercrime, 2024.

12. Malik, S., Ahmad, S., Ullah, I., Park, D.H., Kim, D.H.
An adaptive emergency first intelligent scheduling al-
gorithm for e-client task management and scheduling
in hybrid of hard real-time and soft real-time embedded
IoT systems. Sustainability 2019; 11: 2192.

13. Pereira, D.A., Ourique de Morais, W., Pignaton de
Freitas, E. NoSQL real-time database performance
comparison. Int. J. Parallel Emergent Distrib. Syst.
2017; 33: 144–156.

14. https://zsz.prz.edu.pl/en/research-stand-ioe/about
15. https://docs.openvswitch.org/en/latest/topics/

ovs-extensions/
16. https://github.com/noxrepo/pox.git
17. https://pastebin.com/CptkTTBp A file that prepares

an image with the POX controller (Dockerfile).
18. https://pastebin.com/78hrh0tL Building and run-

ning an image with the POX controller.
19. https://pastebin.com/He4jkUUp Minimal POX con-

troller base class with incoming packet handling.
20. https://pastebin.com/Hk8Y7U6t Container con-

struction based on the YAML configuration file.
21. https://pastebin.com/pYxttinb MQTT packet rec-

ognition and control of packet processing method.
22. https://pastebin.com/mwzh3gVE The code respon-

sible for counting ICMP-type packets and perform-
ing the action (scenario #1).

23. https://pastebin.com/ZCRemHKV Handling pack-
ets based on their type (only MQTT packets are
subject to counting).

24. https://pastebin.com/PN7gdD5V Writing out anom-
aly occurrences every 60 s of program operation.

25. https://pastebin.com/PN8qVg8q Code that controls
the flow of a specific MQTT packet.

26. https://pastebin.com/T5Yfvcs8 Sample package
content in JSON.

27. https://pastebin.com/xzSJSDvi The code checks
whether the “mac” key exists in the package and
introduces error handling.

28. https://pastebin.com/iEVgzNHs Checking whether
the physical MAC address is the same both in the
packet content and in its header.

29. https://pastebin.com/RLk1qtqj Create a list of al-
lowed addresses and check whether the sender’s
physical address is on the list of allowed addresses.

30. https://pastebin.com/7Pzx4jHH Adding the MAC
address of an MQTT intermediary (Broker) to allow
bi-directional traffic.

31. https://pastebin.com/3AvPR1YD Checking of the
package type and whether it is on the list of allowed
packages.

32. https://pastebin.com/YZfDbfGe Cyclic sending of
UDP packets to the MQTT Broker device in Python.

33. Dul, M., Gugała Ł. and Łaba K. Protecting web ap-
plications from authentication attacks, Advances in
Web Development Journal, 2023; 1(1). doi:10.5281/
zenodo.10049992

34. Aldowah, H., Ul Rehman, S. and Umar, I., Security
in internet of things: issues, challenges and solu-
tions. In Recent Trends in Data Science and Soft
Computing: Proceedings of the 3rd International
Conference of Reliable Information and Commu-
nication Technology (IRICT 2018) 2019; 396–405.
Springer International Publishing.

35. Chica, J.C.C., Imbachi, J.C. and Vega, J.F.B. Security
in SDN: A comprehensive survey. Journal of Network
and Computer Applications, 2020; 159: 102595.

36. Sezgin, A., and Boyacı, A. Enhancing intrusion
detection in industrial internet of things through
automated preprocessing. Advances in Science and
Technology Research Journal, 2023; 17(2): 120–
135. https://doi.org/10.12913/22998624/162004

37. Bolanowski, M., Paszkiewicz, A., Żabiński, T.,
Piecuch, G., Salach, M., and Tomecki, K. System
architecture for diagnostics and supervision of in-
dustrial equipment and processes in an IoE device
environment. Electronics, 2023; 12(24).

38. Almutairi, Y.S., Alhazmi, B., and Munshi, A.A.
Network intrusion detection using machine learning
techniques. Advances in Science and Technology
Research Journal, 2022; 16(3): 193–206. https://doi.
org/10.12913/22998624/149934

39. Al-Fayoumi, M. and Al-Haija, Q.A. Capturing low-
rate DDoS attack based on MQTT protocol in software
Defined-IoT environment. Array, 2023; 19: 100316.

40. Cheng, H., Liu, J., Xu, T., Ren, B., Mao, J. and Zhang,

191

Advances in Science and Technology Research Journal 2024, 18(7), 176–191

W. Machine learning based low-rate DDoS attack de-
tection for SDN enabled IoT networks. International
Journal of Sensor Networks, 2020; 34(1): 56–69.

41. Liu, Y. and Al-Masri, E. Slow Subscribers: a novel
IoT-MQTT based denial of service attack. Cluster
Computing, 2023; 26(6): 3973–3984.

42. Galeano-Brajones, J., Carmona-Murillo, J., Valen-
zuela-Valdés, J.F. and Luna-Valero, F. Detection and
mitigation of DoS and DDoS attacks in IoT-based
stateful SDN: An experimental approach. Sensors,
2020; 20(3): 816.

43. Ahuja, N. and Mukhopadhyay, D. June. Identification
of DDoS Attack on IoT Network Using SDN. In 2023
3rd International Conference on Pervasive Computing
and Social Networking (ICPCSN) 2023; 879–884.

44. Xiong, F., Li, A., Wang, H. and Tang, L. An SDN-
MQTT based communication system for battlefield
UAV swarms. IEEE Communications Magazine,
2019; 57(8): 41–47.

45. Chen, X., Wu, T., Sun, G. and Yu, H. Software-
defined MANET swarm for mobile monitoring in
hydropower plants. 2019; 7: 152243–152257.

